
Introduction to Spark

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu

Kenny Lu
School of Information Technology

Nanyang Polytechnic

October 10, 2017

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Learning Outcomes

Discuss and identify the differences between Parallel
Programming and Concurrent Programming during system
design and analysis

Discuss and Identify the differences between data parallelism
and task parallelism during system design and analysis.

Understand and conceptualize data paralellism using
MapReduce

Comprehend and develop script in Spark for data
transformation

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

What is a parallel program?

What is a parallel program?

A parallel program is one that uses a multiplicity of computational
hardware (e.g., several processor cores or several server nodes) to
perform a computation more quickly. The aim is to arrive at the
answer earlier, by delegating different parts of the computation to
different processors that execute at the same time.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Parallelism vs Concurrency

People often compare and confuse parallelism with concurrency.

What is a concurrent program?

By contrast, concurrency is a program-structuring technique in
which there are multiple threads of control. Conceptually, the
threads of control execute ”at the same time”; that is, the user
sees their effects interleaved. Whether they actually execute at the
same time or not is an implementation detail; a concurrent
program can execute on a single processor through interleaved
execution or on multiple physical processors.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Parallelism vs Concurrency

Parallelism Concurrency

Area of Focus Efficiency Structural and Modularity

Number of Goals One One or more

Program Semantic Deterministic Non-deterministic

Single processor Exec Sequential Interleaving

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Parallelism vs Concurrency

Examples of Parallelism

A sodoku solver uses multiple CPU cores

A parallelized database query that retrieves and aggregates
records from a cluster of replica of database.

A K-means analyses running over a Hadoop cluster

Examples of Concurrency

A web application that handles multiple clients HTTP
requests and interacting with the databases.

A User Interface of the a mobile phone handles user’s touch
screen input and exchanging data via the 4G network

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Hardware Parallelism

Single processor, e.g.

Bit-level parallelism
Instruction Pipelining

GPU, e.g.

Matrix operations parallelisation

Multiple processors in a single machine
Shared Memory

Multi-core computer executes multi-threaded program.
Memory are shared among different threads.

Distributed Memory

Multi-GPU parallelisation.

Multiple hosts (machines)

A grid computing
MapReduce cluster, Hadoop

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Software Parallelism

Software Parallelism

Task parallelism (Dataflow parallelism)

Data parallelism

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Software Parallelism

Task parallelism

def cook_beef_bolognese(beef,spaghetti) = {

val sauce = cook_sauce(beef) // task A

val pasta = cook_pasta(spaghetti) // task B

mix(sauce,pasta)

}

Note that task A and task B can be executed in parallel, e.g.
cook sauce(beef) is executed in Core 1,
cook pasta(spaghetti) is executed in Core 2.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Software Parallelism

Data parallelism

def factorial(n) = ...

def main() {

val inputs = List(10, 100, 200, ...)

val results = List()

for (i <- inputs)

{

results.append(factorial(i))

}

results

}

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Software Parallelism

Data parallelism

def factorial(n) = ...

def main() {

val inputs = List(10, 100, 200, ...)

// task C

val results = inputs.map(i => factorial(i))

results

}

Note that each task C can be executed in parallel, e.g.
factorial(10) is executed in Core 1, factorial(100) is
executed in Core 2, factorial(200) is executed in Core 3, ...

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Different Types of Software Parallelism

In most of situations, data parallelism is more scalable than task
parallelism.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce and Google

MapReduce was first introduced and developed by the
development in Google [?].

MapReduce is a formed of data parallelism.

MapReduce is popularized by Hadoop.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce’s Origin

MapReduce was inspired by two combinators coming from
Functional Programming world, i.e. map and reduce (some
times reduce is named as fold)

MapReduce exploits the concept of purity fro FP world to
achieve parallelism.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

map

In FP languages, map(f,l) takes two formal arguments, a higher
order function f and a list l, and applies f to every element in l.
For instance, let incr(x) be a function that returns the result of
adding 1 to x.

incr

def incr(x) = x + 1

We apply it with map as follows

map in action

map(incr, [1,2,3,4])

evaluates to

[incr(1),incr(2),incr(3),incr(4)]

yields

[2,3,4,5]

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

map

Given that f is a pure function, (i.e. it does not modify its external
state when it is executed,) it is guaranteed that map(f,l) can be
parallelized by applying f to every element in l in parallel.
For instance, assuming we have processors A, B, C and D.

map in parallelized mode

map(incr, [1,2,3,4])

evaluates to

[incr(1),incr(2),incr(3),incr(4)]

yields

[2,3,4,5]

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

More on Pure function

A full defintiion of Pure function from Wikipedia.
A function may be described as a pure function if both these
statements about the function hold:

1 The function always evaluates the same result value given the
same argument value(s). The function result value cannot
depend on any hidden information or state that may change
as program execution proceeds or between different executions
of the program, nor can it depend on any external input from
I/O devices.

2 Evaluation of the result does not cause any semantically
observable side effect or output, such as mutation of mutable
objects or output to I/O devices

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

reduce

reduce(f,l) takes a function f and a list l, it aggregates the
elemeents in l with f.
For instance, let add(x,y) be a function that returns the result of
adding x to y.

add

def add(x,y) = x + y

We apply it with reduce as follows

reduce in action

reduce(add, [2,3,4,5])

evaluates to

2+3+4+5

yields

14

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

reduce

Given f is pure and associative, (f is associative iff f(x,f(y,z))

== f(f(x,y),z)), it is guaranteed that reduce(f,l) can be
parallelized by partitioning elements in l into segments,
aggregating each segment with f and aggregating the segment
results into the final result.
For instance, assuming we have processors A and B.

reduce in parallelized mode

reduce(add, [2,3,4,5])

evaluates to

2+3+4+5

yields

5+9

yields 14.
Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Tweaking the partitions in reduce

Suppose instead of summing up all integers in the reduce step, we
would like to sum up all the even numbers and odd numbers
separately.
For instance, assuming we have processors A, B, C and D.

map in parallelized mode with partition keys

map(incr, [1,2,3,4])

evaluates to

[(0,incr(1)),(1,incr(2)),(0,incr(3)),(1,incr(4))]

yields

[(0,2),(1,3),(0,4),(1,5)]

Note that there are two possible values appearing as the first
component of the pairs. 0 indicates that the following value is an
even number and 1 denotes the following number is an odd
number.Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Tweaking the partitions in reduce

Now we can split the intermediate results into two different
lists/arrays based on the partition ids (either 0 or 1).

(0,[2,4])

and

(1,[3,5])

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Tweaking the partitions in reduce

The two partitions can be processed as two independent reduce
tasks.

reduce the even numbers in processor A

(0, reduce([2,4]))

and

reduce the odd numbers in processor B

(1, reduce([3,5]))

If we need to compute the final sum, we can run reduce over the
results from the two tasks.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce in Hadoop

Two basic components in MapReduce

Mapper

Reducer

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce in Hadoop

Mapper

Input: A list/array of key-value pairs.

Output: A list/array of key-value pairs.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce in Hadoop

Reducer

Input: A key and a list/array of values

Output: A key and a value

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

MapReduce in Hadoop

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

WordCount Not using Hadoop

val counts = new Map()

val lines = scala.io.Source.fromFile("file.txt").mkString

for (line <- lines) {

words = line.split(" ")

for (word <- words) {

counts.get(word) match

{ case None => counts.add(word,1)

case Some(count) => counts.update(word,count + 1)

}

}

}

for ((word,count) <- counts.iterator()) {

println(s"$word \t $count")

}

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

Let’s say the input file is as follows

hey diddle diddle

the cat and the fiddle

the cow jumped over the

moon

the little dog laughed

to see such sport

and the dish ran away

with the spoon

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

We expect the output as

hey 1

diddle 2

the 7

cat 1

and 2

fiddle 1

cow 1

jumped 1

over 1

moon 1

little 1

dog 1

laughed 1

to 1

see 1

such 1

sport 1

dish 1

ran 1

away 1

with 1

spoon 1

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The Mapper for WordCount

class WordCountMapper extends Mapper[Object,Text,Text,IntWritable] {

val one = new IntWritable(1)

val word = new Text

override

def map(key:Object, value:Text, context:

Mapper[Object,Text,Text,IntWritable]#Context) = {

for (t <- value.toString().split("\\s")) {

word.set(t)

context.write(word, one)

}

}

}

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The Reducer for WordCount
class WordCountReducer extends Reducer[Text,IntWritable,Text,IntWritable] {

override

def reduce(key:Text, values:java.lang.Iterable[IntWritable],

context:Reducer[Text,IntWritable,Text,IntWritable]#Context) = {

val sum = values.foldLeft(0) { (t,i) => t + i.get }

context.write(key, new IntWritable(sum))

}

}

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

Main for WordCount
object WordCount {

def main(args:Array[String]):Int = {

val conf = new Configuration()

val otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs

if (otherArgs.length != 2) {

println("Usage: wordcount <in> <out>")

return 2

}

val job = Job.getInstance(conf, "wordcount");

job.setJarByClass(classOf[WordCountMapper])

job.setMapperClass(classOf[WordCountMapper])

job.setCombinerClass(classOf[WordCountReducer])

job.setReducerClass(classOf[WordCountReducer])

job.setOutputKeyClass(classOf[Text])

job.setOutputValueClass(classOf[IntWritable])

FileInputFormat.addInputPath(job, new Path(args(0)))

FileOutputFormat.setOutputPath(job, new Path((args(1))))

if (job.waitForCompletion(true)) 0 else 1

}

}

// yarn jar yourJar.jar WordCount /input/ /output/

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

Let’s say the input file is as follows
hey diddle diddle

the cat and the fiddle

the cow jumped over the

moon

the little dog laughed

to see such sport

and the dish ran away

with the spoon

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The mappers go through line by line

[("hey",1), ("diddle",1), ("diddle",1)]

the cat and the fiddle

the cow jumped over the

moon

the little dog laughed

to see such sport

and the dish ran away

with the spoon

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The mappers go through line by line

[("hey",1), ("diddle",1), ("diddle",1)]

[("the",1), ("cat",1), ("and",1), ("the",1), ("fiddle", 1)]

the cow jumped over the

moon

the little dog laughed

to see such sport

and the dish ran away with

the spoon

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The mappers go through line by line

[("hey",1), ("diddle",1), ("diddle",1)]

[("the",1), ("cat",1), ("and",1), ("the",1), ("fiddle", 1)]

[("the",1), ("cow",1), ("jumped",1), ("over",1), ("the", 1),

("moon", 1)]

[("the",1), ("little",1), ("dog",1), ("laughed", 1)]

[("to",1), ("see",1), ("such",1), ("sport",1)]

[("and",1), ("the",1), ("dish",1), ("ran",1), ("away",1),

("with",1), ("the",1), ("spoon",1)]

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The output from the mappers are grouped by keys

[("hey",[1]),

("diddle",[1,1]),

("the",[1,1,1,1,1,1,1]),

("cat",[1]),

("and",[1,1]),

("fiddle", [1]),

("cow",[1]),

("jumped",[1]),

("over",[1]),

("moon", [1]),

("little",[1]),

("dog",[1]),

("laughed", [1]),

("to",[1]),

("see",[1]),

("such",[1]),

("sport",[1])

("dish",[1]),

("ran",[1]),

("away",[1]),

("with",[1]),

("spoon",[1])]

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

An Example

The reducers sum up the values for each key

[("hey",1),

("diddle",2),

("the",7),

("cat",1),

("and",2),

("fiddle", 1),

("cow",1),

("jumped",1),

("over",1),

("moon", 1),

("little",1),

("dog",1),

("laughed", 1),

("to",1),

("see",1),

("such",1),

("sport",1)

("dish",1),

("ran",1),

("away",1),

("with",1),

("spoon",1)]

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

What’s wrong with Hadoop?

All the mapper and reducers are communicating via the HDFS

Reducers tend to be the bottle neck and its loads hardly
re-distribute!

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

What is Spark?

A distrbute cluster computing system favoring in-memory
computation.

It was developed intially for batch processing computation like
MapReduce

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Why Spark?

What’s wrong with MapReduce?

it was designed for moderate CPU and low memory systems.

it relies on disk I/O operations at each intermediate steps.

Its performance is capped by the disk I/O performance, and
symmetric distribution of the Reduce jobs.

Spark comes in assuming our machines are in general more
powerful, and RAMs are cheaper.

it favors in memory computations. Data are loaded from disk
and stay in memory as long as possible.

it uses resillent distributed datasets (RDD) as the abstract
data collections.

it performs better than MapReduce if we have sufficient RAM
in the cluster.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Spark Architecture

A SparkContext is an interface between the Spark Driver Program
(application) and the Spark runtime-system

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

WordCount Example in Spark

Wordcount in Scala

val lines = sc.textFile("hdfs://127.0.0.1:9000/input/")

val counts = lines.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://127.0.0.1:9000/output/")

Wordcount in Python

lines = sc.textFile("hdfs://127.0.0.1:9000/input/")

counts = lines.flatMap(lambda x: x.split(’ ’)) \

.map(lambda x: (x, 1)) \

.reduceByKey(add)

couts.saveAsTextFile("hdfs://127.0.0.1:9000/output/")

sc denotes SparkContext

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

WordCount Example in Spark

Wordcount in Scala

val lines:RDD[String] =

sc.textFile("hdfs://127.0.0.1:9000/input/")

val counts:RDD[(String,Long)] =

lines.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://127.0.0.1:9000/output/")

Recall in Scala List(1,2,3).map(v => v + 1) yields
List(2,3,4)

and List(List(1),List(2),List(3)).flatMap(l => l)

yields List(1,2,3)

An RDD can be seen as a distributed list.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Resilient Distributed Dataset

RDD is an abstraction over a collection of data set being
distributed and partitioned across a cluster of worker
machines, mostly in memory.

Programmers are not required to manage or to coordinate
that distributed and partitioned. RDD is fault tolerant.

RDDs are initialized and managed by the SparkContext.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

RDD transformations are pure

Image adapted from http://www.hadooptpoint.com

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

RDD transformations are pure

Let r denotes an RDD,

r.map(f) and r.flatMap(f) applies f to elements in r.

r.filter(f) filters away elements x in r which f(x) yields
false.

assuming r is a collection of key-value pairs,
r.reduceByKey(f) will shuffle the pairs and group them by
keys. The values grouped under the same key will be reduced
by f. Data locality is exploit when possible.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

RDD transformations are lazy

Computations do not take place unless the results are needed.

In memory cache are explicitly created.

Wordcount in Scala

val lines:RDD[String] =

sc.textFile("hdfs://127.0.0.1:9000/input/")

val counts:RDD[(String,Long)] =

lines.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.persist() // caching

counts.saveAsTextFile("hdfs://127.0.0.1:9000/output/")

val somethingelse = counts.map(...)

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

RDD transformations are resilient to node failure

Since computations are pure, hence they are deterministic. Final
results and intermediate results can be always recomputed.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

How to run it?

First start the cluster

$ /opt/spark-1.4.1-bin-hadoop2.6/sbin/start-all.sh

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Run it in the REPL

$ /opt/spark-1.4.1-bin-hadoop2.6/bin/spark-shell

scala> :load Wordcount.scala

Or we can type the code in line by line.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

Submit to the cluster

Scala

$ /opt/spark-1.4.1-bin-hadoop2.6/bin/spark-submit

Wordcount.jar

Python

$ /opt/spark-1.4.1-bin-hadoop2.6/bin/spark-submit

wordcount.py

It supports R too.

Copyright c© 2015. All Rights Reserved Kenny Zhuo Ming Lu Introduction to Spark

