
	

Supervised Learning – Decision Tree and Linear Regression
Objectives
· Review the concepts of decision tree and linear regression 
· Use the Decision Tree operator to model the risk profile of credit card customer data 
· Use the Linear Regression operator to model medical insurance claims
Decision Tree
In this section, we will introduce the Decision Tree operator to see how to classify customers with credit cards into multiple classes. This will help us predict if a particular customer is of high or low risk in defaulting on his or her credit card loan.
Description
Referring to Figure 1, a decision tree is a tree-like graph or model usually shown inverted. The root of the tree is shown at the top while the nodes or leaves are at the bottom. As in most of the cases for modelling, we require an input set of data or ExampleSet to construct a model. In this case, we are constructing a tree model. Once the tree model is constructed, we can subsequently use it to predict the class or category when we are given an input record with the specified input attributes. 
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[bookmark: _Ref465409499]Figure 1: Example of an decision tree.
In a decision tree, each node of the tree corresponds to one of the input attributes. The number of edges of a nominal interior node is equal to the number of possible values of the corresponding input attribute. Outgoing edges of numerical attributes are labelled with disjoint ranges (e.g. > 3.500). 
Each leaf node represents a value of the label attribute and the value of the label attribute is dependent on the values of the input attributes. In other words, the values of the input attributes will determine the path we travel from the root to the leaf of the tree.
Data 
To create the tree model, we will be using data contained in the file risktrain.csv. The data comes from a risk assessment study in which customers with credit cards were assigned to one of three categories (class) in the risk classification attribute:
· Good risk
· Bad risk-profitable. There are some payments missed or other problems, but were profitable for the issuing company 
· Bad risk-loss
In addition to the risk classification attribute, a number of demographics data, including age, income, number of children, number of credit cards, number of store credit cards, having a mortgage, and marital status, were included with a total of about 2,500 examples.
Follow the steps listed below to see how to construct a decision tree based on the data from the file risktrain.csv.
1. Use a Read CSV operator to read in the risktrain.csv file. Set the RISK attribute as the label (target for prediction).
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Figure 2: Importing RISKTRAIN.csv file and setting the label role for risk attribute.
2. Insert a Decision Tree operator and connect the operators as shown in the figure below:
[image: ]
Figure 3: Connecting up the decision tree operator.
The process will read in the data in the risktrain.csv file and send it to the Decision Tree operator. A decision tree model will be generated and output to the Result panel through the mod port.
3. View the model in the result panel. You should see something like the following figure:
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Figure 4: Incorrect model from the decision tree operator.
Notice that the result appears incorrect, the decision along the tree path are based on the IDs of the examples in the ExampleSet. This is obviously useless to us as IDs for each example is unique and possibly assigned in a random manner and should not have any correlation with the risk assessment!
4. Insert a Select Attribute operator to remove the ID attribute. You should connect the operators such that it is between the Read CSV operator and the Decision Tree operator.
5. Rerun the process and you should see the results as follows:
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Figure 5: Decision tree results.
The figure provides a good overview of the tree model generated from the input data. To predict a customer’s risk assessment category, we travel down the tree and make a decision at each of the node based on the various attribute values of the customer. We stop when we reach the leaf node which will tell us the predicted category of the risk (good risk, bad loss or bad profit).
Note that each leaf node has a colour bar with different width and colours (green, blue or red). The width indicates the number of training samples falling within that leaf node and the colour indicates the distribution of the classes of the risk.
For example, refer to the following figures:
Large number of training samples falls in the leaf node. We have thicker width bar. The colours shows the distribution.

Total: 1324
good risk: 84 (blue)
bad loss: 114 (green)
bad profit: 1126 (red)

Only 3 examples, so thinner bar.
Total: 3
good risk: 1 (blue)
bad loss: 1 (green)
bad profit: 1 (red)

Figure 6: Colour bars on the tree model.
Exercise 1
Given the following applicants:
[image: ]
Figure 7: details of 10 applicants.
You are asked to approve or reject further loans from the customer. Load the data into RapidMiner and use the Decision Tree model that you have just generated to help you decide which of the customers you should approve or reject the loans.

	Customer
	Approve (Yes/No)

	200000
	

	200001
	

	200002
	

	200003
	

	200004
	

	200005
	

	200006
	

	200007
	

	200008
	


Linear Regression
Data 
In this practical, we will use the data file InsuranceClaim.csv, which contains 293 records based on patient admissions to a hospital. All patients belong to a single diagnosis related group (DRG). Four fields) are included:
[image: ]
Figure 8: Data InsuranceClaim.csv
ASG - Admission Severity Group
AGE – Age of Patient
LOS – Length of Stay
CLAIM - Insurance claim amount
The goal is to build a predictive model for the insurance claim amount (CLAIM) and use this model to identify outliers (patients with claim values far from what the model predicts), which might be instances of errors or fraud made in the claims.
Introduction to Linear Regression
Linear regression is a method familiar to just about everyone these days. It is used to predict a target that is interval or ratio in scale (measurement level continuous) with predictors that are also interval or ratio. In addition, categorical input fields can be included by creating dummy variables. RapidMiner provides a few operators to perform linear regression. Examples of operators include Linear Regression, Vector Linear Regression and Generalized Linear Regression.
Linear regression assumes that the data can be modelled with a linear relationship. To illustrate, the figure below contains a scatterplot depicting the relationship between the length of stay for hospital patients and the dollar amount claimed for insurance. Superimposed on the plot is the best-fit regression line. The linear relationship is represented by a straight line on the graph.
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Figure 9: Scatterplot of Hospital Length of Stay and Insurance Claim Amount
The plot may look a bit unusual in that there are only a few values for length of stay (LOS), which is recorded in whole days, and few patients stayed more than three days.
Although there is a lot of spread around the regression line and a few outliers, it is clear that there is a positive trend in the data such that longer stays are associated with greater insurance claims. Linear regression is normally used with several input attributes, however, it is difficult to visualize the complete solution with all input attributes in convenient graphical form, but it is useful to look at scatterplots with just two variables.
Basic Concepts of Regression 
In the plot above, there seems to be a positive relation between length of stay and the amount of a health insurance claim. It would be more useful to have some form of prediction equation. In other words, if we can find a simple function that can approximate the pattern shown in the plot, then the equation for the function would describe the relation and can be used to predict values of one field if we know the values of the others.
A straight line is a very simple function and is usually what we start with. However, the value of the straight line equation would be linked to how well it actually describes or fits the data, and so part of the regression output includes fit measures.
The Regression Equation 
In the plot above, insurance claim amount is placed on the Y (vertical axis) and the length of stay appears along the X (horizontal) axis. If we are interested in insurance claim as a function of the length of stay, we consider insurance claim to be the output field and length of stay as the input or predictor field. A straight line is superimposed on the scatterplot along with the general form of the equation:

Where
B is the slope (the change in y per one unit change in x)
A is the intercept (the value of Y when X is zero)
ei is the model residual or error for the ith observation
Given this, how do we go about finding a best-fitting straight line? The best-fitting straight line is the one that minimizes the sum of the squared deviation of each point about the line.
Referring to the plot of insurance claim amount and length of stay, we might need an indication of how well a straight line fits the data. One of the most often used measure is the r-square measure. The r-square measure (which is the correlation squared, or r2) is on a scale from 0 (no linear association) to 1 (perfect prediction). It can be interpreted as the proportion of variation in one field that can be predicted from the other. Thus an r-square of 0.5 indicates that we can account for 50% of the variation in one field if we know values of the other. You can think of this value as a measure of the improvement in your ability to predict one field from the other (or others if there is more than one input field).
Multiple regression is a direct extension of simple regression. Instead of a single input field, multiple regression allows for more than one input field in the prediction equation.

For multiple regression, besides concerns about how well the equation fits the data we are interested in the relative importance of the independent fields (predictor) in predicting the output field (outcome). 
Residuals and Outliers
Viewing the plot, we see that many points fall near the line but some are farther away it. For each point, the difference between the value of the output field and the value predicted by the equation is called the residual (ei). Points above the line have positive residuals (they were under predicted), those below the line have negative residuals (they were over predicted), and a point falling on the line has a residual of zero (perfect prediction). 
We pay more attention to points having large residuals because they represent cases where the prediction line performs poorly. As we will see later, we can large residuals to identify data errors or possible cases of fraud. Fraud detection is important in insurance claims, invoice submission, or telephone and credit card usage.
An Example: Error or Fraud Detection in Claims 
To illustrate linear regression we use a dataset containing insurance claims (CLAIM) for a single medical treatment performed in a hospital. In addition to the claim amount, the data file also contains patient age (AGE), length of hospital stay (LOS) and a severity of illness category (ASG). The last field is based on several health measures and higher scores indicate greater severity of the illness. 
In this practical, we will build a regression model that predicts the total claim amount for a patient based on his/her length of stay, severity of illness and patient age. Assuming the model fits well enough, we will look closely at those patients that the model predicts poorly. Such cases can simply due to poor model fit but they also might be due to errors on the claims form or fraud. 
We approach the problem of fraud detection by identifying exceptions (cases that are very different) to the prediction model. Such exceptions are not necessarily instances of fraud, but since they are inconsistent with the model, they may be more likely to be fraudulent or contain errors.  Some organizations perform random audits on claims applications and then classify them as fraudulent or not. 
1. Import the file InsuranceClaim.csv using the Read CSV operator. Use the Import Configuration Wizard and remember to set the role of the CLAIM attribute as label.
[image: ]
Figure 10: Set the role of "Claim" to label.
2. Add a “Linear Regression” operator and connect up the operators as shown in the figure below:
[image: ]
Figure 11: Adding and connecting a linear regression operator.
We have connected the model (mod) to the output port. This will display the model generated by the Linear Regression operator. You can think of the model as an equation that helps us predict the CLAIM value based on the other input values (ASG, AGE and LOS). Besides the model, the operator will also generate some figures that give us some idea of how good the equation will be in predicting. Of course the more data there is and the more closely the data relates to each other (in a linear fashion), the better will be the model.
3. Run the process and take a look at the result.
[image: ]
Figure 12: Model generated by the linear regresssion operator.
Referring to the above figure, the first column of the table shows the various attributes and a constant value (intercept). The second column lists the coefficients of the equation (sometimes the coefficients are also denoted using the letter B), So the prediction equation for predicting CLAIM will be
CLAIM = 417.194 * ASG – 33.406 * AGE + 1105.646 * LOS + 3026.754
Given values of ASG, AGE and LOS, we can calculate (or predict) the CLAIM value. 
According to the equation, the coefficient for length of stay indicates that on average, each additional day spent in the hospital was associated with a claim increase of about $1,106. The coefficient for admission severity group (ASG) tells us that each one-unit increase in the severity code is associated with a claim increase of $417. Finally, the age coefficient of about –$33 suggests that claims decrease, on average, by $33 as patient age increases one year. This is counterintuitive and should be examined by a domain expert (here a physician). Perhaps the youngest patients are at greater risk or perhaps the type of insurance policy, which is linked somehow to age, influences the claim amount. If there is no convincing reason for this negative association, the data values for age and claims should be examined more carefully (perhaps data errors or outliers are influencing the results). Such oddities may have shown up in the original data exploration. We will not pursue this issue here, but it certainly would be done in practice. 
The constant or intercept of $3,027 indicates that the amount of predicted claim of someone with 0 days in the hospital, in the least severe illness category (0) and with age 0. This is clearly impossible. We get this odd result because no one in the sample had less than 1 day in the hospital (it was an inpatient procedure) and the patients were adults (no ages of 0), so the intercept projects well beyond where there are any data. Thus the intercept cannot represent an actual patient, but still is needed to fit the data. Also, note that when using regression, it can be risky to extrapolate beyond where the data are observed, since the assumption that the same pattern continues may not be valid.
Again, the prediction is dependent on the coefficients and that is generated based on quality of the data. Note that if there is no underlying relationship between CLAIM and ASG, AGE and LOS, the model will be of poor quality as well. How significant or how well the input attributes are related to the CLAIM output field can be determined from the t-Stat and p-Value values. Generally, the smaller the p-Value (or the further away the t-Stat value is from 0), the more likely the input attribute is related to the targeted output attribute. Looking at the p-Value, we see that all three attributes are highly significant (p-Values are .005 or less). If any of the attributes were found to be not significant, we would typically remove the attributes and rerun the regression. 
The Std. Error column contains standard errors of the estimated regression coefficients. These gives us an idea of the precision of our estimation of the coefficients. In our example, the regression coefficient for length of stay is $1,106 and the standard error is about $104. Thus we would not be surprised if in the population the true regression coefficient were $1,000 or $1,200 (within two standard errors of our sample estimate), but it is very unlikely that the true population coefficient would be $300 or $2,000 (more than 2 standard errors).  
Std. Coefficients, also known as Betas, are standardized regression coefficients and are used to judge the relative importance of each of several input fields. Std Coefficients typically range from –1 to 1 and the further from 0, the more influential the predictor field. Here the length of stay is the most important predictor of claim amount, followed by severity group and age. 
We can also use the Weight by Correlation operator to see the relative importance of the attributes based on correlation of the attribute with the target or labelled attribute.
4. Replace the Linear Regression operator with the Weight by Correlation operator as shown in the figure below:
[image: ]
Figure 13: Weight by correlation operator to find out the relevance of each of the input attributes.
5. Run the process again and you should see the following results:
[image: ]
Figure 14: Weight by correlation result.
The higher the weight value, the more relevant the attribute is to the target attribute. As can be seen from the table shown in the figure above, the LOS is the more relevant following by ASG and finally the AGE.
Points Poorly Fit by Model 
We would like to detect errors or possible fraud by identifying cases that deviate substantially from the model. Even if these are not results of errors or fraud, they are inconsistent with the majority of cases and thus we should examine them closely.
We first create a field that stores the errors in prediction (also known as residual), we then sort and display it in a table. 
6. Add an Apply Model operator and connect the mod output port of the Linear Regression operator to the mod input port of the Apply Model operator. The Apply Model operator will generate a new attribute of the predicted value of CLAIM.
If you connect the output lab port of the Apply Model operator to the res port and view the result, you should see that an additional attribute is added (see figure below):
[image: ]
Figure 15: New attribute calculated based on our model (equation).
We can calculate the difference between the actual value (CLAIM) and the values predicted by our model using the Generate Attributes operator.
7. Insert a Generate Attributes operator and connect the operators as shown below:
[image: ]
Figure 16: Process to calculate the difference between actual and predicted claim values.
8. In the Parameters panel, click on the “Edit List” button and provide a name for the new attribute that we wish to generate (e.g. DIFF) in the dialog box.
 [image: ]
Figure 17: Adding a new ATTRIBUTE TO our data.
9. In the dialog box, we provide a function to generate the values for the new attribute. We can directly key in the formula or we can get some help by clicking on the small calculator icon on the right.
10. Provide the expression as shown below, you can click on the attribute names to insert them into the expression.
[image: ]
Figure 18: Constructing function expression.
Ensure that you have the expression:
CLAIM – [prediction(CLAIM)]
11. Click the Apply buttons to dismiss all the dialog boxes and return to our process canvas.
12. Run the process and take a look at the result. You should see the results as shown in the figure below. Click on the head of the DIFF column to sort it in descending order. 
[image: ]
Figure 19: Results of teh difference between the actual and predicted claim values.
Notice that there are two records for which the claim values are much higher than the regression prediction. Both are about $6,000 more than expected from the model. These claims should be examined more carefully.
We could also examine the last few records for large over-predictions, unlikely to be fraud but might be errors. 
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