
Introduction to Scala

Introduction to Scala

October 9, 2017

1 Learning Outcomes

• Start Scala REPL in Scala application development

• Execute and observe Scala programs Scala application development

• Comprehend all the Scala languages features and the program semantics
when reviewing Scala source codes

• Develop data transformation scripts using Scala

2 Scala Features

1. Scala is an o oriented and f language.

2. Scala is a typed language.

3 First Scala Program - Hello World

1. Check out the source codes.

(a) go to Github and download the scala.zip from

$ cd learning-scala/codes

(b) Examine the script Script.scala in helloworld.

(c) Execute the script with the following

$ scala Script.scala

(d) Examine the code Main.scala in helloworld.

(e) Compile the code

$ scalac Main.scala

(f) Execute the compiled code

$ scala Main

1

Introduction to Scala

4 Scala REPL

(a) Start a terminal in Linux or command line in Windows, type

$ scala

Note that the $ sign is the command prompt, you should not include
it as part of the command.

(b) Exit Scala REPL by typing

scala> :quit

Note that the scala> sign is the Scala REPL prompt, you should
not include it as part of the command.

5 Variables, Values and Assignment State-
ment

In a Scala REPL

(a) Declare a variable with name “first name” and assign a string value
as “robin”.

(b) Declare a value with name “last name” and assign a string value as
“Williams”.

(c) Update the variable “first name” to a new string value “Robin”

(d) If you were to update the value “last name” to a new string “Hood”,
what will happen?

6 Print Statement

In a Scala REPL

(a) Print the variable “first name” and value “last name” individually

(b) Use template, print the following

Robin William (1951 - 2014)

You need to make use of the variable “first name” and value “last name”,
and put 1951 and 2014 into the two additional variables. For instance,
assuming you have defined “first name” and “last name”.

val bYear = 1951

val dYear = 2014

println(s"$first_name $last_name ($bYear - $dYear)")

2

Introduction to Scala

7 If-else

(a) Type the following code snippet in the Scala REPL and observe the
output.

val i = 1

if (i / 2 >= 0.5) {

println(s" ${i} / 2 is greater than or equal to 0.5") }

else {

println(s"${i} / 2 is less than 0.5")

}

8 List and List operation

(a) Declare a list of integer l1 with integers 1, 2, 3 and 4.

(b) Declare a second list l2 whose elements are the odd values of l1

incremented by 1.

(c) Find out the head and the tail of l2.

(d) Reverse l2.

(e) Concatenate l1 and l2

(f) Compute the sum of l1

9 Object Oriented Programming

(a) In the terminal, change the working directory to /git/learning-scala/codes/oop.

(b) Examine the code OOP.scala, are you able to identify the class con-
structors, member fields, member methods? Are you able to identify
the class inheritence?

class Person(n:String,i:String) {

private val name:String = n

private val id:String = i

def getName():String = name

def getId():String = id

}

trait NightOwl {

def stayUpLate():Unit

}

class Student(n:String, i:String, g:Double) extends Person(n,i) with NightOwl {

private var gpa = g

def getGPA() = gpa

3

Introduction to Scala

def setGPA(g:Double) =

{

gpa = g

}

override def stayUpLate():Unit =

{

println("woohoo")

}

}

class Staff(n:String, i:String, sal:Double) extends Person(n,i) {

private var salary = sal

def getSalary() = salary

def setSalary(sal:Double) =

{

salary = sal

}

}

(c) Load the class in the Scala REPL and test it out

scala> :load OOP.scala

Loading OOP.scala...

defined class Person

defined trait NightOwl

defined class Student

defined class Staff

scala> val tom = new Student("Tom", "X1235", 4.0)

tom: Student = Student@601c1dfc

scala> val jerry = new Staff("Jerry", "T0001", 500000.0)

jerry: Staff = Staff@650fbe32

scala> tom.stayUpLate

woohoo

10 Functional Programming in Scala

(a) In the terminal, change the working directory to /git/learning-scala/codes/fp.

(b) Examine the code Exp.scala, are you able to identify the sealed
trait, the case class, and the pattern matching?

sealed trait Exp

case class Val(v:Int) extends Exp

case class Plus(e1:Exp, e2:Exp) extends Exp

4

Introduction to Scala

def simp(e:Exp):Exp = e match

{

case Val(v) => e

case Plus(Val(0), e2) => e2

case Plus(e1,e2) => Plus(simp(e1), simp(e2))

}

(c) Run it with Scala REPL

$ scala

scala> :load Exp.scala

scala> val e = Plus(Val(0), Plus(Val(1), Val(2)))

e: Plus = Plus(Val(0),Plus(Val(1),Val(2)))

scala> simp(e)

res0: Exp = Plus(Val(1),Val(2))

(d) Note that x− 0 = x, x ∗ 1 = x, x/1 = x for all x, can we extend our
Exp data type and the simplification simp to handle minus, multipli-
cation, and division?

(e) Note that the simplification is not througout, e.g.

scala> val e2 = Plus(Val(0), Plus(Val(0),Val(2)))

e2: Plus = Plus(Val(0),Plus(Val(0),Val(2)))

scala> simp(e2)

res1: Exp = Plus(Val(0),Val(2))

How can we fix it?

5

